SURFACE WATER MANAGEMENT CALCULATIONS

MARQUESA

CITY OF MARGATE, BROWARD COUNTY, FLORIDA

HSQ PROJECT No.: 1703-18

Prepared For:
TC MC MARGATE APARTMENTS, LLC.
7480 Southwest 40th Street, Suite \#700
Miami, Florida 33155

Prepared By:

HSQ GROUP, INC. Engineers • Planners • Surveyors 5951 Northwest 173rd Drive, Suite 4

Miami, Florida 33015
(786) 534-3621 Phone

DATE: AUGUST 25, 2018

PRE-DEVELOPMENT CALCULATIONS

HSQ GROUP, INC. Engineers • Planners • Surveyors
5951 Northwest 173rd Drive, Suite 4
Miami, Florida 33015
(786) 534-3621 Phone

GIVEN:

A. LAND USE SUMMARY:

1.	Lake Area $=$	0.000 ac.
2.	Buildings $=$	1.538 ac.
3.	Pavement \& Others $=$	5.623 ac.
4.	Green Areas $=$	0.952 ac.
5.		
	Total $=$	$\underline{\mathbf{8 . 1 1 3}}$

DESIGN CRITERIA:

A. WATER QUALITY CRITERIA:

1. If a wet detention system, then whichever is the greater of the following:
a. The first inch of runoff from the entire project site.
b. The amount of 2.5 inches times the percent impervious for the project site.
2. If a dry detention system, then 75% of the volume required for the wet detention system.
3. If a retention system, then 50% of the volume required.
4. If the property is zoned "Commercial", at least 0.5 inches of retention or dry detention pre-treatment will be required.
5. Any detention system shall be designed to discharge no more than 0.5 inches of the detained volume per day.

B. WATER QUANTITY CRITERIA:

1. DESIGN EVENTS AND RAINFALL AMOUNTS:

a. Design Event for Minimum Road Elevation:

Frequency:	10 year
Duration:	1 day
Amount:	9.00 inches

b. Design Event for Minimum Discharge Elevation:

Frequency:	25 year
Duration:	3 day
Amount:	15.00 inches

c. Design Event for Minimum Finish Floor Elevation:

Frequency:	100 year
Duration:	3 day
Amount:	20.00 inches

2. ADDITIONAL DESIGN INFORMATION:
a. Design Water / Control Elevation: 6.50 NAVD.
b. Drainage Basin / Canal Number:
S.F.W.M.D. C-14 BASIN

COMPUTATIONS:

A. WATER QUALITY COMPUTATIONS:

1. Compute the first inch of runoff from the entire developed project site:
$=1.00$ inch $\quad \mathrm{X} \quad \mathrm{X} \quad$ (113 acres $/ 12$ inches $)$
$=0.676$ ac-ft for the first inch of runoff
2. Compute 2.5 inches times the percent impervious for the developed project site:
a. Site area for water quality pervious / impervious calculations only:
$=$ Total Project $-($ Lake Area + Buildings $)$
$=\quad 8.113$ acres $\quad(\quad 0.000$ acres $+\quad+\quad 1.538$ acres $)$
$=\quad \underline{6.575}$ acres of site area for water quality calculations
b. Impervious area for water quality pervious / impervious calculations only:
= Site area for water quality - Pervious area
$=6.575$ acres $\quad-\quad 0.952$ acres
$=5.623$ acres of impervious area for water quality calculations
c. Percentage of impervious area for water quality:
$=$ Impervious area for water quality / Site area for water quality X 100%
$=5.623$ acres $/ 10.575$ acres X 100\%
$=85.52$ \% Impervious
d. For 2.5 inches times the percentage of impervious area:

$$
\begin{array}{lcc}
= & 2.5 \text { inches } \quad X & 85.52 \% \\
= & \underline{\mathbf{2} .138} \text { inches to be treated }
\end{array}
$$

e. Compute volume required for quality detention:

$$
\begin{aligned}
& =\text { Inches to be treated } \times \text { (Total Site Area - Lake Area) } \\
& =\quad 2.138 \text { inches } \times \quad(8.113 \text { acres } \quad-\quad 0.000 \text { acres) X (} 1 \text { foot / } 12 \text { inches) } \\
& =\quad \underline{1.445} \text { ac-ft required for detention storage }
\end{aligned}
$$

3. The first inch of runoff from the entire developed site $=\quad 0.676 \mathrm{ac}-\mathrm{ft}$ 2.5 inches times the percentage of impervious area $=\quad 1.445 \mathrm{ac}-\mathrm{ft}$

The volume of $1.445 \mathrm{ac}-\mathrm{ft}$ controls

4. If the project is zoned "Commercial" or if the project were discharging directly to a sensitive receiving body and is more than 40% impervious, 0.5 inches of dry detention pre-treatment must be provided:

5. Compute credit for using one of the following systems:
a. Wet detention volume to be provided:

$$
\begin{aligned}
& =\text { Total required detention }- \text { Pre-treatment } \\
& =\quad 1.445 \mathrm{ac}-\mathrm{ft} \\
& =\quad \underline{1.107} \text { ac-ft of volume required for wet detention }
\end{aligned}
$$

b. Dry detention volume to be provided (75% of the total required detention volume):
$=$ Total required detention volume $\times 75 \%$
$=1.445 \mathrm{ac}-\mathrm{ft} \quad \mathrm{X} \quad 75 \%$
$=1.084$ ac-ft of volume required for dry detention
c. Dry retention volume to be provided (50% of the total required detention volume):
$=$ Total required detention volume $\times 50 \%$
$=1.445 \mathrm{ac}-\mathrm{ft} \quad \mathrm{X} \quad 50 \%$
$=\quad \underline{0.723} \mathbf{a c}-\mathrm{ft}$ of volume required for dry retention
B. SUMMARY OF WATER QUALITY COMPUTATIONS:

Item:	Description:	Quantity:
A. 1	First inch of runoff from entire project site $=$	$0.676 \mathrm{ac}-\mathrm{ft}$
A. 2	2.5 inches times percent impervious $=$	$1.445 \mathrm{ac}-\mathrm{ft}$
A.3	Volume to be treated $=$	$1.445 \mathrm{ac}-\mathrm{ft}$
A.4	Pre-treatment required for commercial site $=$	$0.338 \mathrm{ac}-\mathrm{ft}$
A.5.a	Wet detention volume required $=$	$1.107 \mathrm{ac}-\mathrm{ft}$
A.5.b	Dry detention volume required $=$	$1.084 \mathrm{ac}-\mathrm{ft}$
A.5.C	Dry retention volume required $=$	$0.723 \mathrm{ac}-\mathrm{ft}$
A.5.d	Exfiltration trench volume required $=$	$1.445 \mathrm{ac}-\mathrm{ft}$

C. STAGE ELEVATION INFORMATION:

Item:	Description:	$\begin{gathered} \mathrm{S} \\ \text { type } \end{gathered}$	Area ac.	Low ft.	High ft .	$\begin{gathered} \text { I } \\ \% \end{gathered}$	$\begin{aligned} & \text { C } \\ & \% \end{aligned}$	Total Area \%
1	n / a	V						0.00
2	n / a	L						0.00
3	n / a	V						0.00
4	n / a	L						0.00
5	n / a	V						0.00
6	n / a	L						0.00
7	n / a	L						0.00
8	Green Areas	L	0.952	10.40	12.80	0	50	11.73
9	Pavement Areas	L	5.332	10.55	12.80	100	100	65.72
10	Sidewalk Areas	L	0.291	12.00	12.50	100	100	3.59
11	Building Coverage Area	V	1.538	12.19	12.64	100	100	18.96
	Total:		8.113	10.40	12.80	88.27	94.13	100.0

* Abbreviations:	$\mathrm{S}=$ Storage; $(\mathrm{V}=$ Vertical Storage \& $\mathrm{L}=$ Linear Storage) $\mathrm{I}=$ Impervious
	C = Compaction; (Use the following compaction factors: $0 \%, 50 \%, 100 \%$)

1. Soil Moisture Storage Table:

Existing Soil Type: $\underline{3}$ DEPRESSIONAL

	Cumulative	Compacted	Compacted
Depth to Water Table ft.	Water Storage (Pre.-Dev.) in.	Water Storage $($ Post $50 \%)$	Water Storage (Post 100\% $)$
1	0.60		in.

2. Available Soil Storage Calculation:

Item:	Description:	Elev. ft.	S in.	Area acres	Stored ac-in
1	n / a	0.00	0.00	0.000	
2	n / a	0.00	0.00	0.000	0.00
3	n / a	0.00	0.00	0.000	0.00
4	n / a	0.00	0.00	0.000	0.00
5	n / a	0.00	0.00	0.000	0.00
6	n / a	0.00	0.00	0.000	0.00
7	n / a	0.00	0.00	0.000	0.00
8	Green Areas	11.60	5.95	0.952	0.00
9	Pavement Areas	11.68	5.10	0.000	5.66
10	Sidewalk Areas	12.25	5.10	0.000	0.00
11	Building Coverage Area	12.42	5.10	0.000	0.00
					0.00

* Abbreviations: $\begin{array}{ll} & \mathrm{S}=\text { Soil Storage } \\ & \mathrm{P}=\text { Pervious }\end{array}$

3. Moisture Storage Calculation (S):
= Available soil storage / Total Site Area
$=5.66$ ac-in $\quad / 8.113$ acres
$=\quad 0.70$ inches
4. SCS Curve Number Calculation (CN):

$$
\begin{aligned}
& =1000 /(S+10) \\
& =1000 /(0.698+10) \\
& =\underline{93}
\end{aligned}
$$

1. Stage vs. Storage Calculations:

* Abbreviations: $\quad \mathrm{T}=$ Exfiltration Trench

F. MINIMUM BUILDING FINISH FLOOR ELEVATION CALCULATIONS (ZERO DISCHARGE):

1. The rainfall amount for the $100-$ Year, 3 -Day storm event:

$$
=\underline{20.00} \mathrm{in} .
$$

2. Compute inches of runoff, Q :

$$
\begin{aligned}
& =(P-(0.2 S))^{\wedge} 2 /(P+(0.8 X S)) \\
& =(\quad 20.00 \text { in. }-(0.2 X \\
& \left.=(0.70 \text { in. }))^{\wedge 2} 20.00 \mathrm{in} .+(0.8 \mathrm{X} \quad 0.70 \mathrm{in} .)\right)
\end{aligned}
$$

3. Compute volume of runoff:

$$
\begin{aligned}
& =(\text { Inches of Runoff }) \times(\text { Project Area }) \\
& =\quad 19.19 \text { inches } \quad \times \quad 8.113 \text { acres } \times(1 \text { foot } / 12 \text { inches }) \\
& =\quad \underline{\mathbf{1 2} .97} \text { ac-ft of storage required (zero discharge) }
\end{aligned}
$$

4. From the stage vs storage curve, $\underline{\mathbf{1 2 . 9 7}}$ ac-ft corresponds to elevation $\underline{13.58}$ NAVD.
G. MINIMUM DISCHARGE ELEVATION CALCULATIONS (ZERO DISCHARGE):
5. The rainfall amount for the 25-Year, 3-Day storm event:
$=\quad 15.00 \mathrm{in}$.
6. Compute inches of runoff, Q :

7. Compute volume of runoff:
$=($ Inches of Runoff) X (Project Area)
$=14.19$ inches $\quad X \quad 8.113$ acres X (1 foot $/ 12$ inches)
$=\quad \underline{9.60}$ ac-ft of storage required (zero discharge)
8. From the stage vs storage curve, $\underline{\underline{9.60}}$ ac-ft corresponds to elevation $\underline{13.06}$ NAVD.

H. MINIMUM ROAD CROWN ELEVATION CALCULATIONS (ZERO DISCHARGE):

1. The rainfall amount for the 10-Year, 1-Day storm event:
$=\quad \underline{9.00} \underline{\mathrm{in}}$.
2. Compute inches of runoff, Q :

3. Compute volume of runoff:
$=($ Inches of Runoff) X (Project Area)
$=8.21$ inches $X \quad 8.113$ acres $X(1$ foot $/ 12$ inches $)$
$=\quad 5.55 \mathrm{ac}-\mathrm{ft}$ of storage required (zero discharge)
4. From the stage vs storage curve, $\underline{\underline{5.55}}$ ac-ft corresponds to elevation $\underline{12.41}$ NAVD.

1. EXFILTRATION TRENCH CALCULATIONS:

1. Design Formula: $\mathrm{L}=\left(\mathrm{FS}\left(\left(\% \mathrm{WQ}{ }^{*} \mathrm{~V} 1\right)+\mathrm{V} 2\right)\right) /\left(\mathrm{K}\left(\left(2^{*} \mathrm{H} 2^{*} \mathrm{Du}\right)-\left(\mathrm{D} \mathrm{D}^{\wedge} 2\right)+\left(2^{*} \mathrm{H} 2^{*} \mathrm{Ds}\right)\right)+\left(1.39 \times 10^{\wedge} 4^{*} \mathrm{~W}^{*} \mathrm{Du}\right)\right)$
2. Design Information:

V1 = Exfiltrated Volume (Pre-treatment): $\quad 0.00$ ac-in
V2 = Exfiltrated Volume (Additional Storage):
0.00 ac-in

W = Trench Width:
K = Hydraulic Conductivity:
10.00 ft .

H2 = Depth of Water Table:
$1.00 \mathrm{E}-04 \mathrm{cfs} / \mathrm{sq}-\mathrm{ft}$ per ft head
Du = Non-Saturated Trench Depth:
5.00 ft .

Ds = Saturated Trench Depth:
3.00 ft .
1.00 ft .
3. Existing Exfiltration Trench:
$1,850 \mathrm{ft}$.
4. Exfiltration Trench Storage Provided:
$6.72 \mathrm{ac}-\mathrm{in} \quad$ or $\quad 0.56 \mathrm{ac}-\mathrm{ft}$

POST-DEVELOPMENT CALCULATIONS

HSQ GROUP, INC. Engineers • Planners • Surveyors
5951 Northwest 173rd Drive, Suite 4
Miami, Florida 33015
(786) 534-3621 Phone

GIVEN:

A. LAND USE SUMMARY:

1.	Lake Area $=$	0.000 ac.
2.	Buildings $=$	1.706 ac.
3.	Pavement \& Others $=$	3.877 ac.
4.	Green Areas $=$	2.530 ac.
5.		
	Total $=$	$\underline{\mathbf{8 . 1 1 3}}$

DESIGN CRITERIA:

A. WATER QUALITY CRITERIA:

1. If a wet detention system, then whichever is the greater of the following:
a. The first inch of runoff from the entire project site.
b. The amount of 2.5 inches times the percent impervious for the project site.
2. If a dry detention system, then 75% of the volume required for the wet detention system.
3. If a retention system, then 50% of the volume required.
4. If the property is zoned "Commercial", at least 0.5 inches of retention or dry detention pre-treatment will be required.
5. Any detention system shall be designed to discharge no more than 0.5 inches of the detained volume per day.

B. WATER QUANTITY CRITERIA:

1. DESIGN EVENTS AND RAINFALL AMOUNTS:

a. Design Event for Minimum Road Elevation:

Frequency:	10 year
Duration:	1 day
Amount:	9.00 inches

b. Design Event for Minimum Discharge Elevation:

Frequency:	25 year
Duration:	3 day
Amount:	15.00 inches

c. Design Event for Minimum Finish Floor Elevation:

Frequency:	100 year
Duration:	3 day
Amount:	20.00 inches

2. ADDITIONAL DESIGN INFORMATION:
a. Design Water / Control Elevation: 6.50 NAVD.
b. Drainage Basin / Canal Number:
S.F.W.M.D. C-14 BASIN

COMPUTATIONS:

A. WATER QUALITY COMPUTATIONS:

1. Compute the first inch of runoff from the entire developed project site:
$=1.00$ inch $\quad \mathrm{X} \quad \mathrm{X} \quad$ (113 acres $/ 12$ inches $)$
$=0.676$ ac-ft for the first inch of runoff
2. Compute 2.5 inches times the percent impervious for the developed project site:
a. Site area for water quality pervious / impervious calculations only:
$=$ Total Project $-($ Lake Area + Buildings $)$
$=\quad 8.113$ acres $\quad(\quad 0.000$ acres $+\quad+\quad 1.706$ acres $)$
$=\quad \underline{6.407}$ acres of site area for water quality calculations
b. Impervious area for water quality pervious / impervious calculations only:
= Site area for water quality - Pervious area
$=6.407$ acres $\quad-\quad 2.530$ acres
$=3.877$ acres of impervious area for water quality calculations
c. Percentage of impervious area for water quality:
$=$ Impervious area for water quality / Site area for water quality $X 100 \%$
$=3.877$ acres $\quad / \quad 6.407$ acres $X \quad 100 \%$
$=60.51$ \% Impervious
d. For 2.5 inches times the percentage of impervious area:
$=2.5$ inches X
60.51 \%
$=1.513$ inches to be treated
e. Compute volume required for quality detention:

$$
\begin{aligned}
& =\text { Inches to be treated } \times \text { (Total Site Area - Lake Area) } \\
& =\quad 1.513 \text { inches } \times \quad(\quad 8.113 \text { acres } \quad-\quad 0.000 \text { acres }) \times(1 \text { foot } / 12 \text { inches }) \\
& =\quad \underline{1.023} \text { ac-ft required for detention storage }
\end{aligned}
$$

3. The first inch of runoff from the entire developed site $=\quad 0.676 \mathrm{ac}-\mathrm{ft}$ 2.5 inches times the percentage of impervious area $=\quad 1.023 \mathrm{ac}-\mathrm{ft}$

The volume of 1.023 ac-ft controls

4. If the project is zoned "Commercial" or if the project were discharging directly to a sensitive receiving body and is more than 40% impervious, 0.5 inches of dry detention pre-treatment must be provided:

5. Compute credit for using one of the following systems:
a. Wet detention volume to be provided:

$$
\begin{aligned}
& =\text { Total required detention }- \text { Pre-treatment } \\
& =\quad 1.023 \mathrm{ac}-\mathrm{ft} \\
& =\quad \underline{0.685} \mathbf{~ a c - f t ~ o f ~ v o l u m e ~ r e q u i r e d ~ f o r ~ w e t ~ d e t e n t i o n ~}
\end{aligned}
$$

b. Dry detention volume to be provided (75% of the total required detention volume):
$=$ Total required detention volume $\times 75 \%$
$=1.023 \mathrm{ac}-\mathrm{ft} \quad \mathrm{X} \quad 75 \%$
$=\quad 0.767$ ac-ft of volume required for dry detention
c. Dry retention volume to be provided (50% of the total required detention volume):
$=$ Total required detention volume $\times 50 \%$
$=1.023 \mathrm{ac}-\mathrm{ft} \quad \mathrm{X} \quad 50 \%$
$=0.511 \mathbf{a c}-\mathrm{ft}$ of volume required for dry retention
B. SUMMARY OF WATER QUALITY COMPUTATIONS:

Item:	Description:	Quantity:
A. 1	First inch of runoff from entire project site $=$	$0.676 \mathrm{ac}-\mathrm{ft}$
A. 2	2.5 inches times percent impervious $=$	$1.023 \mathrm{ac}-\mathrm{ft}$
A.3	Volume to be treated $=$	$1.023 \mathrm{ac}-\mathrm{ft}$
A.4	Pre-treatment required for commercial site $=$	$0.338 \mathrm{ac}-\mathrm{ft}$
A.5.a	Wet detention volume required $=$	$0.685 \mathrm{ac}-\mathrm{ft}$
A.5.b	Dry detention volume required $=$	$0.767 \mathrm{ac}-\mathrm{ft}$
A.5.C	Dry retention volume required $=$	$0.511 \mathrm{ac}-\mathrm{ft}$
A.5.d	Exfiltration trench volume required $=$	$1.023 \mathrm{ac}-\mathrm{ft}$

C. STAGE ELEVATION INFORMATION:

Item:	Description:	$\begin{gathered} \mathrm{S} \\ \text { type } \end{gathered}$	Area ac.	Low ft.	High ft .	$\begin{gathered} \text { I } \\ \% \end{gathered}$	$\begin{aligned} & \text { C } \\ & \% \end{aligned}$	Total Area \%
1	n / a	V						0.00
2	n / a	L						0.00
3	n / a	V						0.00
4	n / a	L						0.00
5	n / a	V						0.00
6	n / a	L						0.00
7	n / a	L						0.00
8	Green Areas	L	2.530	11.00	12.50	0	50	31.18
9	Pavement Areas	L	3.167	11.00	12.50	100	100	39.04
10	Sidewalk Areas	L	0.710	11.50	13.00	100	100	8.75
11	Building Coverage Area	V	1.706	13.00	13.50	100	100	21.03
	Total:		8.113	11.00	13.50	68.82	84.41	100.0

* Abbreviations:	$\begin{aligned} & S=\text { Storage; }(V=\text { Vertical Storage \& L }=\text { Linear Storage }) \\ & I=\text { Impervious } \end{aligned}$
	C = Compaction; (Use the following compaction factors: $0 \%, 50 \%, 100 \%$)

1. Soil Moisture Storage Table:

Existing Soil Type: $\underline{3}$ DEPRESSIONAL

	Cumulative	Compacted	Compacted
Depth to Water Table ft.	Water Storage (Pre.-Dev.) in.	Water Storage $($ Post $50 \%)$	Water Storage (Post 100\% $)$
1	0.60		in.

2. Available Soil Storage Calculation:

Item:	Description:	Elev. ft.	S in.	Area acres	Stored ac-in
1	n / a	0.00	0.00	0.000	0.00
2	n / a	0.00	0.00	0.000	0.00
3	n / a	0.00	0.00	0.000	0.00
4	n / a	0.00	0.00	0.000	0.00
5	n / a	0.00	0.00	0.000	0.00
6	n / a	0.00	0.00	0.000	0.00
7	n / a	0.00	0.00	0.000	0.00
8	Green Areas	11.75	5.95	2.530	15.05
9	Pavement Areas	11.75	5.10	0.000	0.00
10	Sidewalk Areas	12.25	5.10	0.000	0.00
11	Building Coverage Area	13.25	5.10	0.000	0.00

* Abbreviations: $\begin{array}{ll}\mathrm{S}=\text { Soil Storage } \\ & \mathrm{P}=\text { Pervious }\end{array}$

3. Moisture Storage Calculation (S):
= Available soil storage / Total Site Area
$=15.05 \mathrm{ac}-\mathrm{in} \quad / 8.113$ acres
$=\quad 1.86$ inches
4. SCS Curve Number Calculation (CN):

$$
\begin{aligned}
& =1000 /(S+10) \\
& =1000 /(1.855+10) \\
& =\underline{84}
\end{aligned}
$$

1. Stage vs. Storage Calculations:

* Abbreviations: $\quad \mathrm{T}=$ Exfiltration Trench

F. MINIMUM BUILDING FINISH FLOOR ELEVATION CALCULATIONS (ZERO DISCHARGE):

1. The rainfall amount for the 100-Year, 3-Day storm event:

$$
=\underline{20.00} \mathrm{in} .
$$

2. Compute inches of runoff, Q :
```
=(P-(0.2S) ^^2/(P+(0.8 X S ))
=( 20.00 in. - ( 0.2 X 1.86 in.) ) ^2, 20.00 in. + ( 0.8 X 1.86 in. ) )
= 17.93 inches of runoff
```

3. Compute volume of runoff:

$$
\begin{aligned}
& =(\text { Inches of Runoff }) \times(\text { Project Area }) \\
& =\quad 17.93 \text { inches } \times \quad 8.113 \text { acres } \times(1 \text { foot } / 12 \text { inches }) \\
& =\quad \underline{\mathbf{1 2 . 1 2}} \text { ac-ft of storage required (zero discharge) }
\end{aligned}
$$

4. From the stage vs storage curve, $\underline{\mathbf{1 2 . 1 2}}$ ac-ft corresponds to elevation $\underline{13.58}$ NGVD.
G. MINIMUM DISCHARGE ELEVATION CALCULATIONS (ZERO DISCHARGE):
5. The rainfall amount for the 25-Year, 3-Day storm event:
$=\quad \underline{15.00} \mathrm{in}$.
6. Compute inches of runoff, Q :
$=(P-(0.2 S))^{\wedge} 2 /(P+(0.8 \times S))$
$\left.=\left(\begin{array}{rl}15.00 \text { in. }-(0.2 X\end{array} \quad 1.86 \text { in. }\right)^{\wedge}\right)^{\wedge} 2,15.00$ in. $+(0.8 \mathrm{X} \quad 1.86$ in. $\left.)\right)$
$=(\underline{12.98}$ inches of runoff
7. Compute volume of runoff:
$=($ Inches of Runoff) X (Project Area)
$=12.98$ inches $\quad X \quad 8.113$ acres $X(1$ foot $/ 12$ inches $)$
$=\quad 8.78$ ac-ft of storage required (zero discharge)

4
From the stage vs storage curve,
8.78 ac-ft corresponds to elevation
13.05 NGVD.

H. MINIMUM ROAD CROWN ELEVATION CALCULATIONS (ZERO DISCHARGE):

1. The rainfall amount for the 10-Year, 1-Day storm event:
$=\quad \underline{9.00} \underline{\mathrm{in}}$.
2. Compute inches of runoff, Q :

3. Compute volume of runoff:
$=($ Inches of Runoff) X (Project Area)
$=\quad 7.10$ inches $\quad \mathrm{X} \quad 8.113$ acres X (1 foot $/ 12$ inches)
$=\quad 4.80 \mathrm{ac}-\mathrm{ft}$ of storage required (zero discharge)
4. From the stage vs storage curve, $\underline{4.80}$ ac-ft corresponds to elevation $\underline{12.41}$ NGVD.

1. EXFILTRATION TRENCH CALCULATIONS:

1. Design Formula: $\mathrm{L}=\left(\mathrm{FS}\left(\left(\% \mathrm{WQ} \mathrm{Q}^{*} \mathrm{~V} 1\right)+\mathrm{V} 2\right)\right) /\left(\mathrm{K}\left(\left(\mathrm{H} 2^{*} \mathrm{~W}\right)+\left(2^{*} \mathrm{H} 2^{*} \mathrm{Du}\right)-\left(\mathrm{Du} \mathrm{A}^{\wedge}\right)+\left(2^{*} \mathrm{H} 2^{*} \mathrm{Ds}\right)\right)+\left(1.39 \times 10^{\wedge} 4^{*} \mathrm{~W} * D u\right)\right)$
2. Design Information:

V1 = Exfiltrated Volume (Pre-treatment): $\quad 0.00$ ac-in
V2 = Exfiltrated Volume (Additional Storage):
0.00 ac-in

W = Trench Width:
K = Hydraulic Conductivity:
8.00 ft .

H2 = Depth of Water Table:
$1.00 \mathrm{E}-04 \mathrm{cfs} / \mathrm{sq}-\mathrm{ft}$ per ft head

Du = Non-Saturated Trench Depth:
5.00 ft .

Ds = Saturated Trench Depth:
3.00 ft .
1.00 ft .
3. Exfiltration Trench Provided:
$1,800 \mathrm{ft}$.
4. Exfiltration Trench Storage Provided:
9.39 ac-in or $\quad 0.78$ ac-ft

J. PRE VS. POST DEVELOPMENT CALCULATION SUMMARY:

MARQUESA (NAVD.)			
PHASE	$10 \mathrm{Y}-1 \mathrm{D}$	25 Y - 3 D	100 Y - 3D
PRE-DEVELOPMENT	12.41	13.06	13.58
POST-DEVELOPMENT	12.41	13.05	13.58

REFERENCE MATERIAL

HSQ GROUP, INC.

Engineers • Planners • Surveyors
5951 Northwest 173rd Drive, Suite 4
Miami, Florida 33015
(786) 534-3621 Phone

National Flood Hazard Layer FIRMette

Legend

SEE PIS REPORT FOR DETAILED LEGEND AND INDEX MAP FOR FIRM PANEL LAYOUT

	Without Base Flood Elevation (BFE) Zone A V, A99			
With BFE or Depth Zone AE, AO, AH, VE, AR				
SPECIAL FLOOD				
HAZARD AREAS		$	$	Regulatory Floodway
:---	:---			

B 20.2 Cross Sections with 1\% Annual Chance 17.5 Water Surface Elevation
(8)- - Coastal Transect
min mimi $^{\text {Base Flood Elevation Line (BFE) }}$
$\xlongequal{=}$ Limit of Study
Jurisdiction Boundary
--- --- Coastal Transect Baseline
OTHER
FEATURES \qquad Profile Baseline Hydrographic Feature

MAP PANELS

Digital Data Available

No Digital Data Available an authoritative property location.

This map complies with FEMA's standards for the use of digital flood maps if it is not void as described below. The baseman shown complies with FEMA's baseman accuracy standards
The flood hazard information is derived directly from the authoritative NFHL web services provided by FEMA. This map was exported on 8/25/2018 at 9:34:25 PM and does not reflect changes or amendments subsequent to this date and time. The NFHL and effective information may change or become superseded by new data over time.

This map image is void if the one or more of the following map elements do not appear: baseman imagery, flood zone labels, legend, scale bar, map creation date, community identifiers, FIRM panel number, and FIRM effective date. Map images for unmapped and unmodernized areas cannot be used for regulatory purposes.

100 Year Flood Contours NAVD (NGVD)

FIGURE C-4. 1-DAY RAINFALL: 10-YEAR RETURN PERIOD

FIGURE C-8. 3-DAY RAINFALL: 25-YEAR RETURN PERIOD

FIGURE C-9. 3-DAY RAINFALL: 100-YEAR RETURN PERIOD

